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ABSTRACT

An x-ray source capable of producing picosecond range pulse widths at
high repetition rates is demonstrated. Picosecond light pulses are converted to
picosecond electron pulses which are then accelerated onto a target to produce
x-rays. Using a conventional PIN diode, a time duration of less than 300 psec
is observed for Al Ka x-ray emission. This x-ray source has potential applica-
tions for fast dynamic measurements of light-induced structural changes and for
characterizing picosecond x-ray diagnostic equipment.
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PICOSECOND X-RAY GENERATION FROM PICOSECOND
PHOTOELECTRON PULSES

Steve Williamson and Gerard Mourou

Laboratory for Laser Energetics
University of Rochester

250 East River Road
Rochester, New York 14623
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The advent of high brightness, short temporal width x-ray emission from synchrotron
radiation and from laser-produced plasmas has led to the use of x-rays as a probe for kinetic
studies. Dynamic measurements on the millisecond to subnanosecond time scale have been
demonstrated, with current emphasis placed on resolving structural changes in biological
samples. 1-7 Unfortunately, the temporal width of synchrotron radiation is limited by the charac-
teristics of the particle accelerator, 1, 3,6 and the complexity of the equipment involved precludes
its easy replication. Laser generated plasma emission suffers both from the high energy per
pulse requirement which restricts it to low repetition rate lasers, and from the collisional plasma
heating time which sets a lower limit to the temporal width, 8 11 although these restrictions
might be somewhat eased by using the two pulse technique developed by Epstein et al. 12

We report here on a simple, low cost means of producing a high-repetition rate, charac-
teristic x-ray emitting source capable of temporal widths down to the picosecond time scale.
Using an extension of earlier work done with picosecond electron diffraction, 13 this technique
involves the generation of picosecond pulses of photoelectrons which are rapidly accelerated in
a high electric field and then strike an anode-target where they produce x-rays. It has been pre-
viously noted in another context that x-rays can be generated from photoelectrons in the pres-
ence of high electric fields. 14 .15 We now show that photoelectron pulses can be used to gen-
erate short x-ray bursts.

The x-ray generator shown in Fig. 1 (a) consists of a flat metallic photocathode held at a
large negative voltage with respect to the grounded flat anode, which also serves as the x-ray
source. A metallic photocathode is used instead of the more efficient alkali halide materials so
that the apparatus can function at moderate vacuum and later be opened to air. Gold is a partic-
ularly good choice in this respect as it is virtually free of oxide layers which would reduce the
photoelectric efficiency. For the typical 5xI0 -s Torr vacuum, the maximum applied voltage at
the 2 cm electrode spacing is 25 kV.

The light source is the fourth harmonic of an actively-passively mode-locked Nd/YAG
laser producing 15 psec pulses of approximately 10 mJ at the laser fundamental or approxi-
mately 30 ,uJ at 266 nm following frequency conversion (measured with a Laser Precision RJ-
700 energy meter). The yield and temporal profile of the photoelectron and x-ray bursts are
measured with a factory calibrated PIN diode operated at 290V DC near the breakdown voltage
(Quantrad model 025 PIN-125 M). To measure the x-ray burst the diode is placed directly
behind the anode-target, with a 25 jsm or 50 jsm Beryllium window to block the incident
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electrons and scattered laser light. Using a grounded copper mesh instead of the anode target,
the electron burst is measured both with the PIN diode and with a Ga As detector developed at
the Laboratory for Laser Energetics,16 as shown in Fig. I (b). Both detectors are coupled by
20 GHz semi-rigid coaxial cable to a fast oscilloscope (Tektronix model 7104 with time base
7B92A and vertical amplifier 7A29). By direct irradiation of the Ga As detector with 15 psec
266 nm laser pulses, the response of the oscilloscope is found to be approximately 250 psec.

Based on the process of electron beam conductivity, the Ga As detector can be used to
measure the photoelectron pulse width and the result is shown in Fig. 2. The oscilloscope lim-
ited response of - 250 psec indicates that the photoelectron pulse width is on the order of the
15 psec laser pulse. It was, however, not possible to measure the x-ray emission with the
Ga As detector.

The temporal profile of the x-ray burst is measured with the PIN diode and the observed
' signal with a 10-90% risetime of approximately 400 psec is shown in Fig. 3. The x-rays are gen-

.- erated from a 3 /Am aluminum anode held at 20 kV with respect to the gold photocathode and
are then filtered by a 25 14m Be window. To insure that the observed signal is not due to laser
light or to transmitted electrons, the diode output has been checked in the absence of either
laser light or high voltage. Both control conditions exhibit a random 10 mV peak-to-peak noise
similar to that shown on the bottom trace of Fig. 3. Although it was not possible to fully cali-
brate the temporal response of the PIN diode, 17 deconvoluting the - 250 psec oscilloscope
response from the observed x-ray signal indicates that the combination of the x-ray pulse width
and the PIN diode response is " 300 psec.

'0.
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FIG. 2. Trace of the oscillo-
scope limited response to the
photoelectron burst measured

" with a Ga As detector. The
input laser energy at 266 nm- is approximately 30 jsJ and
the accelerating potential-,. between the gold photo-

-- cathode and the grounded
copper mesh in front of
the detector is 15k V.
The 10 - 90 % risetime is
' 250 psec.
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FIG. 3. Oscilloscope trace of
__ the PIN diode signal from a
:- -- 25 pAm Be filtered burst of* x-rays generated from a
CE 3 pAm aluminum anode held

at 20 k V with respect to the
gold photocathode. The laser
input energy at 266 nm is
- 40 p., the measured x-ray
flux is 3 x 105 into - 2 r
steradians and the signal
risetime is 400 psec. The
bottom trace is taken with the
laser fight blocked and shows
the random 10 mV peak-to-TIIE (500 ps/div) peak background.

The yield of photoelectrons and of subsequent x-rays is determined from the calibration
curves of the PIN diode, and shows a linear dependence with input laser energy. 18 Under typi-cal operating conditions, a 30 IAJ pulse at 266 nm focussed to a spot size of 100 Am yields 107
electrons for an efficiency of approximately 10-6. The yield of x-rays from electrons, measured
in -27r steradian transmission through the 3 pm Al target and a 50 pm Be window, is approxi-
mately 1% for 20 kV accelerating potential. The observed factor of two drop in intensity in x-ray signal upon going from a 25 pm to a 50 pAm Be window is taken as good evidence that the
detected emission is indeed Al K. line emission. 19

Space charge broadening imposes important current density limitations on the photoelec-tron burst, which translate into a maximum of number of x-ray photons for a given temporal
pulse width and spot size. Although durations of the observed signals are detector limited, we
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believe that, due to space charge broadening,20 the electron (and also the x-ray) bursts are
longer than the initiating 15 psec laser pulse. In light of extensive studies in electron gun 20 and
streak camera 21,22 development, one can expect that an optimized design comprised of a large,
curved photocathode having a high accelerating potential and a short drift region will consider-
ably increase the maximum x-ray yield. Further work with a picosecond x-ray streak camera
may more fully characterize this technique.

The feature that distinguishes the photoelectron generation of x-rays from the more com-
mon plasma or synchrotron sources is the possibility of producing very short pulses of x-rays at
high repetition rates from modest input powers using comparatively simple equipment. The
efficiency of the photoelectric emission can be improved by several orders of magnitude by
choosing a high yield, visible light photocathode, making it possible to operate this x-ray source
with low power, high repetition rate lasers (such as mode-locked Argon ion lasers). Since the
x-ray bursts are well synchronized with the laser pulses, such a system would provide an attrac-
tive source of low power, high repetition rate, short x-ray probe pulses for fast dynamic meas-
urements, using transient x-ray diffraction 23,24 or absorption. A more immediate use for the
short x-ray bursts would be to characterize picosecond x-ray diagnostic equipment.

In conclusion, an alternative source for x-ray line emission capable of operating at high
repetition rates with picosecond range pulse widths is demonstrated by the use of photoelectron

-emission in high static electric fields. A pulse width of less than 300 psec is determined for the
Al K, x-ray emission. Optimization of source geometry and of photocathode material should

provide a well-synchronized, low energy probe pulse for transient diffraction or absorption stu-
dies down to the picosecond time scale to follow light-induced structural changes.
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